CLINICAL TRIAL
CHEST TUBE CLEARANCE STUDY
RESULTS PUBLISHED IN JOURNAL OF CARDIOTHORACIC SURGERY
Yvon Beribeau, MD
New England Heart and Vascular Institute
Catholic Medical Center in Manchester, New Hampshire

A recent clinical trial evaluated the use of the PleuraFlow active tube clearance to prevent retained blood related complications in heart surgery patients by actively clearing chest tubes during early recovery in the ICU. The study was a real world propensity matched analysis of 697 consecutive patients who underwent cardiac surgery. 302 patients served as a baseline control (Phase 0). These patients had chest tube stripping only when clot was noticed. Then the program implemented an active clearance protocol to prevent chest tube clogging using Pleuraflow in 58 patients in a training and compliance verification period (Phase 1). After the staff was trained and compliance was verified, 337 patients were treated prospectively using active

THE ROLE OF PERIOPERATIVE NUTRITION ACROSS THE CONTINUUM OF SURGICAL CARE
A MULTI-PRONGED APPROACH TO OPTIMIZING PERIOPERATIVE NUTRITION HAS BEEN SHOWN TO BE BENEFICIAL IN ADDRESSING MANY OF THE CHANGES ASSOCIATED WITH SURGERY
Rakesh C. Arora, MD, University of Manitoba; Refaat AF Hegazi, MD, PhD, Abbott Nutrition Research & Development

Surgery for the cardiac patient is an “organized injury” that exerts metabolic, immunological and nutritional challenges. These changes comprise a well-described postoperative insulin resistance driven by the stimulated secretion of counter-regulatory hormones (growth hormone, glucocorticoids, catecholamines and glucagon). Moreover, surgery is associated with an inflammatory response that results in an “arginine depletion syndrome” which extends for days to weeks postoperatively. A multi-pronged approach to optimizing perioperative nutrition has been shown to be beneficial in addressing many of the changes associated with surgery. The recently published ERAS®-Cardiac Surgery guidelines highlight the need for preoperative nutritional optimization; continued consumption of clear liquids until 2 to 4h before general anesthesia and preoperative oral carbohydrate (CHO) loading1.

MORE INSIDE
• Clinical Trial: Chest Tube Clearance Study
• Nutrition: A Multi-pronged Approach to Perioperative Nutrition
• Silent Stokes: Transcatheter Aortic Valve Implantation Patients
• Hemostasis: Comparing a digital with an analog drainage system
• Recent Publications
• Virtual Conferences

TWITTER
JOIN THE CONVERSATION
Follow us and join the conversation at ERAScardiac.org
tube clearance (Phase 2). The need to drain retained blood, pleural effusions, postoperative atrial fibrillation, Acute Kidney Injury (AKI), ICU resource utilization and hospital costs were assessed. Propensity matched patients in Phase 2 had a reduced need for drainage procedures for pleural effusions (22% vs. 8.1%, p = p = 0.04). There was also a marked reduction in AKI. This corresponded with fewer hours in the ICU (43.5 [24–79] vs 30 [24–49], p = p = 0.04).

“The cost reduction was particularly profound, which has helped us justify the costs of our quality improvement efforts with the hospital administration,” said Dr. Baribeau, the principle investigator of this study. Another finding in this study, as also seen in other studies, was the volume of bleeding (measured as chest tube output) was significantly less in Phase 2 patients at 24 h and in total. While this may seem counter intuitive, it suggest there may be an advantage of more rapidly clearing shed mediastinal blood to prevent on going microvascular bleeding from the cut surfaces in the early hours after surgery. Tissue plasminogen activator (t-PA) is known to significantly accumulate in shed mediastinal blood, which can promote on going microvascular bleeding within the post-surgical space if not promptly evacuated by chest tubes. Therefore perhaps having shed mediastinal blood more effectively evacuated could leave less t-PA remaining in contact with these tissues, facilitating a more rapid achievement of microvascular hemostasis in this time period.

THE NOT-SO-SILENT STROKES SEEN IN TRANSCATHETER AORTIC VALVE IMPLANTATION PATIENTS

Michael J. Lee BS, MBS and Judson B. Williams M.D., MHS
Campbell University School of Medicine and WakeMed Health and Hospitals; Raleigh, NC, USA

Stroke is a well-documented potential post-operative complication that can occur after Transcatheter Aortic Valve Implantation (TAVI/TAVR). It occurs in approximately 2 to 5 percent of patients within 30 days. 1 There is much data regarding the risk of stroke associated with different equipment, procedures, and severity of stenosis, but the data on the rate of clinically silent cerebral infarcts post-TAVI are unknown.2 TAVI is now ubiquitous in the daily practice of cardiothoracic surgery. Tied to a shorter recovery time, fewer complications, and easier implantation, TAVI has become a favorable method for valve replacement. Younger and lower risk patients are electing to undergo TAVI each year.1 While the data on clinically apparent strokes post-TAVI is well documented, the occurrence of silent or “covert” strokes remains obscure. One well-conducted pooled analysis of 25 prospective studies documented clinically asymptomatic cerebral ischemia to be seen in as many as 77.5% of patients post-TAVI on MRI.3 The danger of clinically silent strokes is that while they may initially be asymptomatic, they have been linked to increased risk for dementia, steeper decline in cognitive function, and an increase in subsequent strokes.2 The older, higher risk population undergoing TAVI may be even more vulnerable to silent infarcts. On the other hand, clinically silent strokes may be of even greater concern in the lower risk patient population due to the potential long-term sequelae.

While asymptomatic strokes will be clinically silent at the time of the index procedure, complications may subsequently develop. This is driving active research on cerebral embolic protection devices and strategies for TAVI patients.2 Along with further research on prevention, the development of improved stroke risk stratification for TAVI patients should be discussed. Is there a role for MRI assessment post-TAVI to identify patients with clinically silent infarcts who may be at risk for future complications? Or could we employ something as simple as a modified mini-mental status exam to screen for so-called covert strokes? In our growing enthusiasm for this transformative therapy, we should not forget the dangers of these perhaps not-so-silent strokes.

In addition to preoperative nutrition optimization and CHO loading, early postoperative enteral nutrition and perioperative immunonutrition (IMN) are evolving as essential components of perioperative nutrition within ERAS protocols (figure 1). IMN is defined by multiple professional societies’ guidelines as enteral feeding formulas supplemented with fish oil and arginine. The consensus guidelines by the Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition suggest the routine use of IMN in the surgical ICU for all postoperative patients who require enteral nutrition. Similarly, consensus guidelines of the American Society for Enhanced Recovery and Perioperative Quality Initiative (ASER-POQI) recommend that IMN should be considered for all major abdominal surgical patients. ASER-POQI consensus guidelines also recommend early high protein (defined as at least 20% of calorie content from protein) post-operative diet (clear liquid and full liquid diets not indicated).

A MULTI-PRONGED APPROACH TO OPTIMIZING PERIOPERATIVE NUTRITION HAS BEEN SHOWN TO BE BENEFICIAL IN ADDRESSING MANY OF THE CHANGES ASSOCIATED WITH SURGERY.

Although more studies of perioperative IMN in cardiac surgery patients are warranted, the currently available evidence shows beneficial clinical outcomes. In a study of patients who were scheduled to undergo coronary artery bypass grafting, 50 participants were randomly assigned to receive either an IMN or isocaloric diet with IMN. Importantly, data from this study suggest that benefits can be achieved with a minimum of 5 days preoperative IMN in high-risk patients who are undergoing elective cardiac surgery.

CHO loading and IMN, when implemented as a component of the perioperative bundle in enhancing recovery protocols, will continue to evolve as effective nutritional interventions, potentially associated with reduced length of postoperative hospital stay and complications, while improving patient-reported outcomes. Investigating the clinical effects of perioperative IMN in cardiac surgery patients will be an important area of future research.

Abbreviations:

- CHO: Carbohydrate
- IMN: Immunonutrition

A recently published trial suggests that total time to hemostasis (TTTH) may be a better method to evaluate the quality of a hemostatic agent’s benefits than the traditional method of time to hemostasis (TTH). TTTH combines the preparation time of a hemostatic agent and the time for the agent to create hemostasis after application to a bleeding site (TBS). TTTH may be a better quality indicator of hemostatic agent function, because it reflects the actual time that a surgeon must wait to achieve hemostasis after identification of a bleeding site requiring treatment with a hemostatic agent. Specifically, that is the time for which a patient may be exposed to continued hemorrhage, have the length of an operation prolonged, and be exposed to additional safety risks. As newer hemostatic agents become available in the operating room that are essentially immediately ready, TTTH becomes a more relevant quality indicator and products that take a longer time to prepare may be less desirable.

TTTH BECOMES A MORE RELEVANT QUALITY INDICATOR AND PRODUCTS THAT TAKE A LONGER TIME TO PREPARE MAY BE LESS DESIRABLE.

An example is provided here that shows statistically significant benefits to an immediately ready hemostatic agent (HEMOBLAST™ Bellows; Biom’Up, Lyon, France), 19.5 ± 9.8 seconds, compared to one with time required for preparation (FLOSEAL Hemostatic Matrix; Baxter Healthcare Corporation, Hayward, CA), 2 minutes and 26.4 ± 52.3 seconds (p < 0.001). As noted in Table 1, the proportion of patients achieving hemostasis at a TTTH of 3 minutes was significantly higher in the HEMOBLAST™ Bellows group.

This same study was also one of the first randomized, controlled trials to use a validated surface bleeding severity scale (SBSS), The SPOT GRADE™. The scale also provided the ability to more precisely determine the efficacy of a hemostatic agent against different levels of bleeding severity permitting efficacy comparisons between agents based on baseline TBS bleeding severity. The proportion of patients achieving hemostasis for the most severe level 3 bleeding (up to 117 mL/min) at a TTTH of 5 minutes was significantly more for the immediately ready hemostatic agent. Thus, both TTTH and the SPOT GRADE™ may be useful to cardiac surgeons to enhance the quality of surgical operations and potentially improve outcomes.

<table>
<thead>
<tr>
<th>Time</th>
<th>HEMOBLAST™</th>
<th>FLOSEAL</th>
<th>Difference (95% cl)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 minutes</td>
<td>34/53 (64.2%)</td>
<td>5/52 (9.6%)</td>
<td>54.5% (37.4%, 71.6%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 1: Proportion of Patients Achieving Hemostasis at 3 minutes

<table>
<thead>
<tr>
<th>Baseline SBSS</th>
<th>HEMOBLAST™</th>
<th>FLOSEAL</th>
<th>Difference (95% cl)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (N=53)</td>
<td>22/23 (95.7%)</td>
<td>18/30 (60%)</td>
<td>35.7% (12.4%, 58.9%)</td>
<td><0.007</td>
</tr>
<tr>
<td>2 (N=31)</td>
<td>17/18 (94.4%)</td>
<td>3/13 (23.1%)</td>
<td>42.3% (39.5%, 100%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 2: Proportion of Patients Achieving Hemostasis at 5 Minutes Based on Bleeding Severity
IN THE NEWS:

>> PODCAST

“And the Beat Goes On”
Episode 9 of the Ahead of the Curve Podcast

An interview with Dr. Daniel Engelman is featured in Ahead of the Curve, a podcast moderated by Jeff Gonzales, MD, and produced for physicians and health care providers to provide a form of discussion, evaluation, and reflection of the times during the COVID-19 pandemic.

>> Click to LISTEN to Podcast

RECENT PUBLICATIONS:

commentary
Low hanging fruit—reducing hospital-acquired pressure injuries associated with cardiac surgery
The Journal of Thoracic and Cardiovascular Surgery, January 21, 2020
Daniel T. Engelman, MD; Quazi K. Uddin, MD; Cheryl Crisafi, MS, RN

A little is way too much: What we have learned about perioperative acute kidney injury
The Journal of Thoracic and Cardiovascular Surgery, January 21, 2020
Daniel T. Engelman, MD; Thomas A. Schwann, MD, MBA

Cardiac Enhanced Recovery After Surgery: A Guide to Team Building and Successful Implementation
Seminars in Thoracic and Cardiovascular Surgery, February 28, 2020
Rawn Salenger, MD; Vicki Morton-Bailey, DNP, AGNP-BC; Michael Grant, MD, MSc; Alexander Gregory, MD, FRCP, CA; Judson B. Williams, MD, MHS; Daniel T. Engelman, MD

The Need for Better Identification of Postoperative Delirium
The Journal of Thoracic and Cardiovascular Surgery, 2020
Subhasis Chatterjee, MD; Daniel T. Engelman, MD

Delirium definition influences prediction of functional survival in patients one-year postcardiac surgery
(original article) The Journal of Thoracic and Cardiovascular Surgery, July 2020
Dubiel C, Hiebert BM, Stammers AN, Sanjanwala RM, Tangri N, Singal RK, Manji RA, Rudolph JL, Arora RC.J

Addressing the Cardiac Surgical Opioid Crisis
STS Summer Series
August 28, 2020
Moderators: Rakesh C. Arora, MD; Michael C. Grant, MD, MSE

Improving Health Care Leadership in the Covid-19 Era
NEJM Catalyst, June 4, 2020
Kevin W. Lobdell, MD; Siddharth Hariharan, MA, BA; Will Smith, MBA, BA; Geoffrey A. Rose, MD; Brian Ferguson, MSc, BA; Chris Fussell, MS, BA

The following articles are all from an ERAS-dedicated issue of The Journal Critical Care Clinics August 12, 2020.

How to Start an Enhanced Recovery After Surgery Cardiac Program
Oliver K. Jawitz, MD; William T. Bradford, MD; Gina McConnell, RN; Jill Engel, NP; Jessica Erin Allender, PharmD; Judson B. Williams, MD, MHS

Preoperative Treatment of Malnutrition and Sarcopenia in Cardiac Surgery
Aileen Hill, MD; Rakesh C. Arora, MD; Daniel T. Engelman, MD; Christian Stoppe, MD

Prevention of Acute Kidney Injury
Mira Küllmar, MD; Alexander Zarbock, MD; Daniel T. Engelman, MD; Subhasis Chatterjee, MD; Nana-Maria Wagner, MD

Surgical Site Infections in Cardiac Surgery
Jayakumar, MBBS; Ali Khoynezhad, MD, PhD, FHRS; Marjan Jahangiri, MBBS, MS, FRCS (CTh)

Early Extubation in Enhanced Recovery from Cardiac Surgery
Ciana McCarthy, MD, FCAI, JFICMI, EDIC, MEd; Nick Fletcher, MBBS, FRCA, FFICM

Goal-Directed Therapy for Cardiac Surgery
Kevin W. Lobdell, MD; Subhasis Chatterjee, MD; Michael Sander, MD

Postoperative Multimodal Analgesia in Cardiac Surgery
Linda F. Barr, MD; Michael J. Boss, MD; Michael A. Mazzeffi, MD, MPH, MSc; Bradley S. Taylor, MD; Rawn Salenger, MD

RESOURCES

COVID-19 webpage
We’ve added a COVID-19 Resources Page to the ERAS-Cardiac website.

>> visit webpage

special article
Cardiac surgery Enhanced Recovery Programs modified for COVID-19: Key steps to preserve resources, manage caseload backlog, and improve patient outcomes
Journal of Cardiothoracic and Vascular Anesthesia, August 10 2020
Alexander J. Gregory; Michael C. Grant, MD; Edward Boyle; Rakesh C. Arora; Judson B. Williams; Rawn Salenger; Subhasis Chatterjee; Kevin W. Lobdell; Marjan Jahangiri; Daniel T. Engelman

>> read article

VIRTUAL CONFERENCES:

September 11-13th, 2020
Evidence Based Perioperative Medicine USA Masters Course

September 24-26th, 2020
STS 17th Annual Perioperative and Critical Care Conference

September 29 – October 1, 2020
American Society for Enhanced Recovery

We’ve added a COVID-19 Resources Page to the ERAS-Cardiac website.
ERAS®-Cardiac Society Members

EXECUTIVE BOARD

Daniel Engelman, MD
President, Cardiac Surgeon
Baystate Medical Center, Springfield MA, USA

Michael Grant, MD
Vice President
Cardiac Anesthesia and Critical Care Medicine
Johns Hopkins, Baltimore, MD, USA

Alex Gregory, MD
Secretary, Cardiac Anesthesia
University of Calgary, Canada

Kevin Lobdell, MD
Treasurer
Cardiac Surgeon
University of Calgary, Canada

Rakesh Arora, MD, PhD
Cardiac Surgeon
University of Manitoba, Winnipeg, Canada

V. Seenu Reddy, MD, MBA, FACS
Cardiac Surgeon
University of Minnesota, Minneapolis, Minnesota, USA

Marjan Jahangir, MBBS, FRCS, FRCS (CTh)
Cardiac Surgeon
St. Georges University of London

John Augoustides, MD
Cardiac Surgeon
Penn Medicine Clinical Care, Philadelphia, PA, USA

Keith Allen, MD
Cardiac Surgeon
Mid America Heart and Lung Surgeons
Kalamazoo, MI, USA

Ramzan Arroela-Torres
Cardiac Surgeon
West National Medical Center, Mexico

John Augoustides, MD
Cardiac Surgeon
Penn Medicine Clinical Care, Philadelphia, PA, USA

Walid Ben Ali, MD
Cardiac Surgeon
Montreal Heart, Montreal, Quebec, Canada

Jessica Brown, MD
Cardiac Anesthesia
Southern Methodist, Houston, TX, USA

Andre Denault, MD
Cardiac Anesthesia
Montreal Heart, Montreal Quebec, Canada

Jill Engel, RN
Cardiac Nursing
Duke University Medical Center
Durham, North Carolina, USA

Nick Fletcher, MBBS, FRCA, FFICM
Cardiac Anesthesia
St. Georges University of London

Mary Zellinger, APRN-CCNS, MN, ANP-BC,
CORN-CSC, FCM, FAAN
Critical Care Nursing
Emory University Hospital

Subjects Matter Experts

Keith Allen, MD
Cardiac Surgeon
Mid America Heart and Lung Surgeons
Kalamazoo, MI, USA

Ramzan Arroela-Torres
Cardiac Surgeon
West National Medical Center, Mexico

John Augoustides, MD
Cardiac Surgeon
Penn Medicine Clinical Care, Philadelphia, PA, USA

Walid Ben Ali, MD
Cardiac Surgeon
Montreal Heart, Montreal, Quebec, Canada

Jessica Brown, MD
Cardiac Anesthesia
Southern Methodist, Houston, TX, USA

Andre Denault, MD
Cardiac Anesthesia
Montreal Heart, Montreal Quebec, Canada

Jill Engel, RN
Cardiac Nursing
Duke University Medical Center
Durham, North Carolina, USA

Nick Fletcher, MBBS, FRCA, FFICM
Cardiac Anesthesia
St. Georges University of London

Bram Geller, MD
Critical Care, Cardiology
Penn State College of Medicine
Philadelphia, PA, USA

Kamrouz Ghadimi, MD
Cardiac Anesthesia
Duke University School of Medicine
Durham, North Carolina, USA

Hilary P. Grocott, MD, FRCP, FASE
Cardiac Anesthesia
University of Manitoba, Winnipeg, Canada

Jacob T Gutsche, MD, FASE, FCCM
Cardiovascular Critical Care
University of Pennsylvania
Philadelphia, PA, USA

Matthias Kirsch, MD
Cardiac Surgeon
Medical University of Vienna
Vienna, Austria

Gudrun Kunst, MD PhD, FRCA, FFICM
Cardiac Anesthesia
King's College Hospital, Denmark Hill, UK

Michael Manning, MD, PhD
Cardiac Anesthesia
Duke University
Durham, NC, USA

Gregg Nelson, MD, PhD
Secretary of the ERAS® Society
University of Cambridge
Cambridge, England

Tom Nguyen, MD
Cardiac Anesthesia
Memorial Hermann Texas Medical Center
Houston, TX, USA

Prakash A. Patel, MD, FASE
Cardiac Anesthesia
University of Pennsylvania
Philadelphia, PA, USA

Nathalie Roy, MD, FRCSC
Cardiac Surgeon
Boston Children's Hospital, Boston, MA, USA

Michael Sandor, MD
Cardiac Anesthesia
University of Giessen
Giessen, Germany

Christian Stoppe, MD
Cardiac Anesthesia
Aachen University
Aachen, Germany

Vinod Thourani, MD
Cardiac Surgeon
Medstar Heart and Vascular Institute
Washington, DC, USA

Keenan Yount, MD
Cardiac Surgeon
Virginia Commonwealth University
Richmond, VA, USA
Who we are

ERAS® stands for Enhanced Recovery after Surgery, and we improve surgical care and recovery through research, education, audit, and implementation of evidence-based practices. In early 2017, a group of cardiac surgeons, anesthesiologists, and intensivists first met to establish the Enhanced Recovery After Cardiac Surgery (ERACS®) Society to achieve these goals for patients undergoing heart surgery. This initial organization’s work led to the publication of the first-ever expert consensus recommendations for a cardiac surgical enhanced recovery protocol. We have since joined with the ERAS® Society and have established an organization of multinational experts representing all aspects of healthcare delivery. ERAS® Cardiac is a non-profit organization with the mission to develop evidence-based expert consensus statements promoting best practice recovery practices. The goal is to provide hospitals with better guidance for developing local protocols that are part of a continuous quality improvement process for better patient care, and reduce postoperative complications and costs after heart surgery.

ERAS® Society

The ERAS® Society is an international organization with enhanced recovery guidelines for several surgical sub-specialties. Beginning as the ERAS® Study Group in 2001, team leaders Professor Ken Fearon (University of Edinburgh) and Professor Olle Ljungqvist (Karolinska Institutet) spearheaded the developments made in multimodal surgical care. The ERAS® Study Group soon discovered that there were a variety of local traditions in practice, as well as an inconsistent application of evidence-based best practices. This prompted the group to examine the process of change from tradition to best-practice. Since its inception, the ERAS® Society has expanded to include several subspecialties, emphasized the benefits of standardized best-practice across the continuum of the perioperative period, highlighted the importance of data-driven self-evaluation, and promoted the improvement of patient care.

Our Organizational Structure

Our ERAS® Cardiac Society is made up of experts from around the world, including participation from all members of the healthcare team. Our members strive to implement enhanced recovery principles at their local institutions while advancing improved patient care internationally through collaboration, education, and dissemination of up-to-date knowledge regarding optimal perioperative care. Our organization is divided into an Executive Board, Advisory Board, and a pool of Subject Matter Experts.

Corporate financial support will be used to promote the mission of the ERAS® Cardiac Society. We are committed to standardizing best practice surrounding the preoperative and perioperative care of cardiac surgical patients through expert consensus, review of the literature and open communication. This unrestricted support does not represent the ERAS® Cardiac Society’s support or agreement to promote any pharmaceutical, device, or technology related to the sponsors.

For more information and to become a sponsor please contact: Bonnie Engelman, MA, Director of Sponsor Relations, ERAS® Cardiac Society by mail at bengelman@erascardiac.org

For MORE INFORMATION:

To learn more about our organization, including our board members and upcoming meetings: www.erascardiac.org

Cheryl Crisafi MSN, RN, CNL Cherylerasc@gmail.com
Nurse Coordinator ERAS® Cardiac Society

Donna Frankel donnerasc@gmail.com
Office Manager ERAS® Cardiac Society

Bonnie Engelman, MA bengelman@erascardiac.org
Director of Sponsor Relations ERAS® Cardiac Society